Synthesis of Multifunctional Polymer Brush Surfaces via Sequential and Orthogonal Thiol-Click Reactions
Document Type
Article
Publication Date
2012
School
Polymer Science and Engineering
Abstract
Fabrication of multifunctional surfaces with complexity approaching that found in nature requires the application of a modular approach to surface engineering. We describe a versatile post-polymerization modification strategy to synthesize multifunctional polymer brush surfaces via combination of surface-initiated photopolymerization (SIP) and orthogonal thiol-click reactions. Specifically, we demonstrate two routes to multifunctional brush surfaces: in the first approach, alkyne-functionalized homopolymer brushes are modified with multiple thiolsvia a statistical, radical-mediated thiol-yne co-click reaction; and in the second approach, statistical copolymer brushes carrying two distinctly-addressable reactive moieties are sequentially modified via orthogonal base-catalyzed thiol-X (where X represents an isocyanate, epoxy, or α-bromoester) and radical-mediated thiol-yne reactions. In both cases, we show that surface properties, in the form of wettability, can be easily tuned over a wide range by judicious choice of brush composition and thiol functionality.
Publication Title
Journal of Materials Chemistry
Volume
22
Issue
3
First Page
932
Last Page
943
Recommended Citation
Rahane, S. B.,
Hensarling, R. M.,
Sparks, B. J.,
Stafford, C. M.,
Patton, D. L.
(2012). Synthesis of Multifunctional Polymer Brush Surfaces via Sequential and Orthogonal Thiol-Click Reactions. Journal of Materials Chemistry, 22(3), 932-943.
Available at: https://aquila.usm.edu/fac_pubs/255