A Study of ENSO Prediction Using a Hybrid Coupled Model and the Adjoint Method for Data Assimilation
Document Type
Article
Publication Date
11-1-2003
Department
Marine Science
Abstract
An experimental ENSO prediction system is presented, based on an ocean general circulation model (GCM) coupled to a statistical atmosphere and the adjoint method of 4D variational data assimilation. The adjoint method is used to initialize the coupled model, and predictions are performed for the period 1980-99. The coupled model is also initialized using two simpler assimilation techniques: forcing the ocean model with observed sea surface temperature and surface fluxes, and a 3D variational data assimilation (3DVAR) method, similar to that used by the National Centers for Environmental Prediction (NCEP) for operational ENSO prediction. The prediction skill of the coupled model initialized by the three assimilation methods is then analyzed and compared. The effect of the assimilation period used in the adjoint method is studied by using 3-, 6-, and 9-month assimilation periods. Finally, the possibility of assimilating only the anomalies with respect to observed climatology in order to circumvent systematic model biases is examined. It is found that the adjoint method does seem to have the potential for improving over simpler assimilation schemes. The improved skill is mainly at prediction intervals of more than 6 months, where the coupled model dynamics start to influence the model solution. At shorter prediction time intervals, the initialization using the forced ocean model or the 3DVAR may result in a better prediction skill. The assimilation of anomalies did not have a substantial effect on the prediction skill of the coupled model. This seems to indicate that in this model the climatology bias, which is compensated for by the anomaly assimilation, is less significant for the predictive skill than the bias in the model variability, which cannot be eliminated using the anomaly assimilation. Changing the optimization period from 6 to 3 to 9 months showed that the period of 6 months seems to be a near-optimal choice for this model.
Publication Title
Monthly Weather Review
Volume
131
Issue
11
First Page
2748
Last Page
2764
Recommended Citation
Galanti, E.,
Tziperman, E.,
Harrison, M.,
Rosati, A.,
Sirkes, Z.
(2003). A Study of ENSO Prediction Using a Hybrid Coupled Model and the Adjoint Method for Data Assimilation. Monthly Weather Review, 131(11), 2748-2764.
Available at: https://aquila.usm.edu/fac_pubs/3153
Comments
© Copyright [date of publication] American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (http://www.copyright.com). Questions about permission to use materials for which AMS holds the copyright can also be directed to the AMS Permissions Officer at permissions@ametsoc.org. Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (http://www.ametsoc.org/CopyrightInformation).
Publisher Version