Facile, Modular Transformations of RAFT Block Copolymers via Sequential Isocyanate and Thiol-ene Reactions
Document Type
Article
Publication Date
2011
Department
Polymers and High Performance Materials
Abstract
We describe a robust strategy utilizing reversible addition-fragmentation chain transfer (RAFT) polymerization and sequential transformations involving carbamate formation and thiol-ene click addition to synthesize well-defined functional block copolymers. The hydroxy-functional block copolymer scaffold, poly[(N,N-dimethylacrylamide)-b-(N-(2-hydroxyethyl)acrylamide)] (PDMAn-b-PHEAm) was first prepared via RAFT, requiring no protecting group chemistry. The hydroxyl groups of the HEA block were then reacted with 2-(acryloyloxy)ethylisocyanate (AOI) or allylisocyanate (AI) resulting in acrylate- and allyl-functionalized copolymer precursors, respectively. The efficiencies of both Michael and free radical-mediated thiol-ene addition reactions were investigated using model thiol compounds having alkyl, aryl, hydroxyl, carboxylic acid, amine and amino acid functionalities. The steps of RAFT polymerization, isocyanate-hydroxyl coupling and thiol-ene addition can be accomplished under mild conditions, thus offering a facile, modular route to the synthesis of functional copolymers from a single polymeric precursor.
Publication Title
Polymer Chemistry
Volume
2
Issue
9
First Page
1976
Last Page
1985
Recommended Citation
Flores, J. D.,
Treat, N. J.,
York, A. W.,
McCormick, C. L.
(2011). Facile, Modular Transformations of RAFT Block Copolymers via Sequential Isocyanate and Thiol-ene Reactions. Polymer Chemistry, 2(9), 1976-1985.
Available at: https://aquila.usm.edu/fac_pubs/388