Inference Based on Alternative Bootstrapping Methods in Spatial Models with an Application to County Income Growth in the United States
Document Type
Article
Publication Date
12-1-2011
Department
Political Science, International Development, and International Affairs
Abstract
This study examines aggregate county income growth across the 48 contiguous states from 1990 to 2005. To control for endogeneity, we estimate a two-stage spatial error model and implement a number of spatial bootstrap routines to infer parameter significance. Among the results, we find that outdoor recreation and natural amenities favor positive growth in rural counties and property taxes correlate negatively with rural growth. Comparing bootstrap inference with other models, including the recent General Moment heteroskedastic-robust spatial error estimator, we find similar conclusions suggesting bootstrapping can be effective in spatial models where asymptotic results are not well established.
Publication Title
Journal of Regional Science
Volume
51
Issue
5
First Page
880
Last Page
896
Recommended Citation
Monchuk, D. C.,
Hayes, D. J.,
Miranowski, J. A.,
Lambert, D. M.
(2011). Inference Based on Alternative Bootstrapping Methods in Spatial Models with an Application to County Income Growth in the United States. Journal of Regional Science, 51(5), 880-896.
Available at: https://aquila.usm.edu/fac_pubs/514