Document Type

Article

Publication Date

12-15-1997

Department

Computing

School

Computing Sciences and Computer Engineering

Abstract

Growth of polymer density in an electro-deposition model of polymer chains on an impenetrable wall is studied on a two dimensional discrete lattice using a Monte Carlo simulation. Polymer-polymer repulsion and polymer-wall attraction for the adsorbing wall (along with the neutral and repulsive interactions) are considered in an external field. Effects of the field strength (B), temperature (T), and chain length (L-c) on the density profile of the polymer chains and wall coverage are investigated. The spatial density profile shows onset of oscillation near the wall at a characteristic field (B-c) which depends on chain length and temperature, In low field, adsorption-co-desorption transition at the wall appear on increasing the temperature (unlike neutral and repulsive walls). In high field regime, on the other hand, a non-monotonic dependence of coverage on temperature is observed with a maximum at a temperature (T-m) which increases on increasing B. The equilibrium value of the polymer density (P-d) shows a power-law decay with the chain length, p(d) similar to L-c(-alpha), at the wall and in the bulk with corresponding values of the exponent alpha(w) and alpha(B); these exponents differ substantially and depend on B, T, and L-c. The coverage decays monotonically with the chain length at a constant temperature and field. (C) 1997 American Institute of Physics. [S0021-9606(97)51347-X].

Comments

©Journal of Chemical Physics

Publisher Version

Publication Title

Journal of Chemical Physics

Volume

107

Issue

23

First Page

10260

Last Page

10267

Find in your library

Share

COinS