In Situ Grown Titania Composition for Optimal Performance and Durability of Nafion® Fuel Cell Membranes
Document Type
Article
Publication Date
8-1-2011
Department
Polymers and High Performance Materials
Abstract
Nafion® membranes were modified via in situ, catalyzed sol-gel reactions of titanium isopropoxide to form titania particles in the polar acid domains. FTIR spectroscopy showed successful intraparticle chemical bond formation with incomplete condensation of TiOH groups. Although such modification can lower membrane fuel cell performance, this study was aimed at reducing membrane degradation without significantly altering performance in the sense of material optimization. These incorporated particles did not change membrane equivalent weight and the water uptake was similar to that of the unmodified Nafion (R) membrane. Membrane dimensional stability, mechanical properties, and ability to withstand contractile stresses associated with humidity change at 80 degrees C and 100% RH were improved. An open circuit voltage (OCV) accelerated degradation test showed the titania modification held voltage better than the unmodified membrane. Performance deterioration of Nafion (R) after the OCV test was much higher than that of the modified membrane and the fluoride emission of the latter was lower. The degraded Nafion (R) membrane failed when subjected to creep, whereas the modified membrane remained intact with significantly low deformation. This inorganic modification offers a simple way to enhance membrane durability by reducing both physical and chemical degradation. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 121: 2344-2353, 2011
Publication Title
Journal of Applied Polymer Science
Volume
121
Issue
4
First Page
2344
Last Page
2353
Recommended Citation
Patil, Y.,
Kulkarni, S.,
Mauritz, K. A.
(2011). In Situ Grown Titania Composition for Optimal Performance and Durability of Nafion® Fuel Cell Membranes. Journal of Applied Polymer Science, 121(4), 2344-2353.
Available at: https://aquila.usm.edu/fac_pubs/548