A Localized Approach for the Method of Approximate Particular Solutions
Document Type
Article
Publication Date
5-1-2011
Department
Mathematics
School
Mathematics and Natural Sciences
Abstract
The method of approximate particular solutions (MAPS) has been recently developed to solve various types of partial differential equations. In the MAPS, radial basis functions play an important role in approximating the forcing term. Coupled with the concept of particular solutions and radial basis functions, a simple and effective numerical method for solving a large class of partial differential equations can be achieved. One of the difficulties of globally applying MAPS is that this method results in a large dense matrix which in turn severely restricts the number of interpolation points, thereby affecting our ability to solve large-scale science and engineering problems. In this paper we develop a localized scheme for the method of approximate particular solutions (LMAPS). The new localized approach allows the use of a small neighborhood of points to find the approximate solution of the given partial differential equation. In this paper, this local numerical scheme is used for solving large-scale problems, up to one million interpolation points. Three numerical examples in two-dimensions are used to validate the proposed numerical scheme. (C) 2011 Elsevier Ltd. All rights reserved.
Publication Title
Computers & Mathematics With Applications
Volume
61
Issue
9
First Page
2376
Last Page
2387
Recommended Citation
Yao, G.,
Kolibal, J.,
Chen, C.
(2011). A Localized Approach for the Method of Approximate Particular Solutions. Computers & Mathematics With Applications, 61(9), 2376-2387.
Available at: https://aquila.usm.edu/fac_pubs/615