Self-Learning for Autonomous Systems
Document Type
Article
Publication Date
9-1-1993
Department
Computing
School
Computing Sciences and Computer Engineering
Abstract
Learning is a key element in the strive for machine intelligence. Unsupervised learning is even more important for robots or autonomous systems that operate in remote environment away from human interactions, such as the case in the fully automated factory floor. To achieve unsupervised learning, a variety of models and techniques have been employed by investigators. In this paper some of the models, especially in the area of Neural Networks are compared and contrasted. Special consideration will be given self organizing maps (Kohonen Networks) [1,6]. A comparison of the Kohonen Networks and their biological counterpart is given. The introduction of these systems to increase the intelligence, and hence the autonomy of systems, is considered.
Publication Title
Computers and Industrial Engineering
Volume
25
Issue
41278
First Page
401
Last Page
404
Recommended Citation
Ali, K. S.
(1993). Self-Learning for Autonomous Systems. Computers and Industrial Engineering, 25(41278), 401-404.
Available at: https://aquila.usm.edu/fac_pubs/6662