Document Type

Article

Publication Date

6-1-2010

Department

Marine Science

Abstract

In August 2005, the eye of Hurricane Katrina passed 90 km to the west of a 3-m discus buoy deployed in the Mississippi Sound and operated by the Central Gulf of Mexico Ocean Observing System (CenGOOS). The buoy motions were measured with a strapped-down, 6 degrees of freedom accelerometer, a three-axis magnetometer, and from the displacement of a GPS antenna measured by postprocessed-kinematic GPS. Recognizing that an accelerometer experiences a large offset due to gravity, the authors investigated four different means of computing wave heights. In the most widely used method for a buoy with a strapped-down, 1D accelerometer, wave heights are overestimated by 26% on average and up to 56% during the peak of the hurricane. In the second method, the component of gravity is removed from the deck relative z-axis accelerations, requiring pitch and roll information. This is most similar to the motion of the GPS antenna and reduces the overestimation to only 5% on average. In the third method, the orientation data are used to obtain a very accurate estimate of the vertical acceleration, reducing the overestimation of wave heights to 1%. The fourth method computes an estimate of the true earth-referenced vertical accelerations using the accelerations from all three axes but not the pitch and roll information. It underestimates the wave heights by 2.5%. The fifth method uses the acceleration from all three axes and the pitch and roll information to obtain the earth-referenced vertical acceleration of the buoy, the most accurate measure of the true wave vertical acceleration. The primary conclusion of this work is that the measured deck relative accelerations from a strapped- down, 1D accelerometer must be tilt corrected in environments of high wave heights.

Comments

Publisher Version

© Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (http://www.copyright.com). Questions about permission to use materials for which AMS holds the copyright can also be directed to the AMS Permissions Officer at permissions@ametsoc.org. Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (http://www.ametsoc.org/CopyrightInformation).

Publication Title

Journal of Atmospheric and Oceanic Technology

Volume

27

Issue

6

First Page

1012

Last Page

1028

Find in your library

Share

COinS