Document Type
Article
Publication Date
10-1-2012
Department
Biological Sciences
School
Biological, Environmental, and Earth Sciences
Abstract
Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. (C) 2012 Elsevier Inc. All rights reserved.
Publication Title
Experimental Cell Research
Volume
318
Issue
16
First Page
2094
Last Page
2104
Recommended Citation
Wang, R.,
Guo, Y.
(2012). Transient Inhibition of Cell Proliferation does not Compromise Self-Renewal of Mouse Embryonic Stem Cells. Experimental Cell Research, 318(16), 2094-2104.
Available at: https://aquila.usm.edu/fac_pubs/8335
Comments
Publisher's Version