Document Type


Publication Date



Biological Sciences


[1] Ice storms are disturbance events with potential impacts on carbon sequestration. Common forest management practices, such as fertilization and thinning, can change wood and stand properties and thus may change vulnerability to ice storm damage. At the same time, increasing atmospheric CO(2) levels may also influence ice storm vulnerability. Here we show that a nonintensively managed pine plantation experienced a similar to 250 g C m(-2) reduction in living biomass during a single storm, equivalent to similar to 30% of the annual net ecosystem carbon exchange of this ecosystem. Drawing on weather and damage survey data from the entire storm cell, the amount of C transferred from the living to the dead biomass pool (26.5 +/- 3.3 Tg C), 85% of which will decompose within 25 years, was equivalent to similar to 10% of the estimated annual sequestration in conterminous U. S. forests. Conifer trees were more than twice as likely to be killed as leafless deciduous broadleaf trees. In the Duke Forest case study, nitrogen fertilization had no effect on storm-induced carbon transfer from the living to detrital pool while thinning increased carbon transfer threefold. Elevated CO(2) ( administered with the free-air CO(2) enrichment (FACE) system) reduced the storminduced carbon transfer to a third. Because of the lesser leaf area reduction, plots growing under elevated CO(2) also exhibited a smaller reduction in biomass production the following year. These results suggest that forests may suffer less damage during each ice storm event of similar severity in a future with higher atmospheric CO(2).


©Journal of Geophysical Research: Atmospheres

DOI: 10.1029/2005JD006428, 2006

Publication Title

Journal of Geophysical Research: Atmospheres





Find in your library

Included in

Biology Commons