Unigenic Evolution: A Novel Genetic Method Localizes a Putative Leucine Zipper that Mediates Dimerization of the Saccharomyces cerevisiae Regulator GCRLP
Document Type
Article
Publication Date
12-1-1995
Department
Biological Sciences
School
Biological, Environmental, and Earth Sciences
Abstract
The GCR1 gene of Saccharomyces cerevisiae encodes a transcriptional activator that complexes with Rap1p and, through UASRPG elements (Rap1p DNA binding sites), stimulates efficient expression of glycolytic and translational component genes. To map the functionally important domains in Gcr1p, we combined multiple rounds of random mutagenesis in vitro with in vivo selection of functional genes to locate conserved, or hypomutable, regions. We name this method unigenic evolution, a statistical analysis of mutations in evolutionary variants of a single gene in an otherwise isogenic background. Examination of the distribution of 315 mutations in 24 variant alleles allowed the localization of four hypomutable reg ions in GCR1 (A, B, C, and D). Dispensable N-terminal (intronic) and C-terminal portions of the evolved region of GCR1 were included in the analysis as controls and were, as expected, not hypomutable. The analysis of several insertion, deletion, and point mutations, combined with a comparison of the hypomutability and hydrophobicity plots of Gcr1p, suggested that some of the hypomutable regions may individually or in combination correspond to functionally important surface domains. In particular, we determined that region D contains a putative leucine zipper and is necessary and sufficient for Gcr1p homodimerization.
Publication Title
Genetics
Volume
141
Issue
4
First Page
1263
Last Page
1274
Recommended Citation
Deminoff, S. J.,
Tornow, J.,
Santangelo, G. M.
(1995). Unigenic Evolution: A Novel Genetic Method Localizes a Putative Leucine Zipper that Mediates Dimerization of the Saccharomyces cerevisiae Regulator GCRLP. Genetics, 141(4), 1263-1274.
Available at: https://aquila.usm.edu/fac_pubs/8740