Soluble Glycosaminoglycans Inhibit the Interaction of TAT-PTD with Lipid Vesicles
Document Type
Article
Publication Date
9-1-2008
Department
Chemistry and Biochemistry
School
Mathematics and Natural Sciences
Abstract
Several models have been proposed for translocation of cell-penetrating peptides across membranes, but no general consensus on the mechanism of this process has emerged. It was hypothesized that heparan sulfate on the cell surface may play a role. We used fluorescence spectroscopy to study the effect of three soluble glycosaminoglycans—heparan sulfate, low-molecular-weight heparin, and dermatan sulfate—on the interaction of the fluorescently labeled peptide TAT−PTD with negatively charged small unilamellar vesicles. We found that the presence of glycosaminoglycans results in an order-of-magnitude increase in the apparent dissociation constant K d of the electrostatic component of the peptide/membrane interaction (from 0.13 to 2.6 mM). Thus, rather than aiding in the peptide’s penetration, soluble glycosaminoglycans competitively decrease TAT−PTD’s binding to the membrane, presumably by neutralizing its charge, and thereby attenuating electrostatic forces involved in the interaction. Our results, however, do not exclude a possible role of membrane-anchored glycosaminoglycans in the endocytotic transduction of CPPs across the cell membrane.
Publication Title
International Journal of Peptide Research and Therapeutics
Volume
14
Issue
3
First Page
209
Last Page
214
Recommended Citation
Tiriveedhi, V.,
Butko, P.
(2008). Soluble Glycosaminoglycans Inhibit the Interaction of TAT-PTD with Lipid Vesicles. International Journal of Peptide Research and Therapeutics, 14(3), 209-214.
Available at: https://aquila.usm.edu/fac_pubs/8985