Date of Award
Spring 5-2015
Degree Type
Honors College Thesis
Department
Mathematics
First Advisor
James V. Lambers
Advisor Department
Mathematics
Abstract
The purpose of this project is to model the diffusion of heat energy in one space dimension, such as within a rod, in the case where the heat flow is through a medium consisting of two or more homogeneous materials. The challenge of creating such a mathematical model is that the diffusivity will be represented using a piecewise constant function, because the diffusivity changes based on the material. The resulting model cannot be solved using analytical methods, and is impractical to solve using existing numerical methods, thus necessitating a novel approach.
The approach presented in this thesis is to represent the solution as a linear combination of wave functions that change frequencies at the boundaries of different materials. It will be demonstrated that by using the Uncertainty Principle to construct a basis of such functions, in conjunction with a numerical method that is ideally suited to work with them, a mathematical model for heat diffusion through different materials can be solved much more efficiently than with other well-established methods from the literature.
Copyright
Copyright for this thesis is owned by the author. It may be freely accessed by all users. However, any reuse or reproduction not covered by the exceptions of the Fair Use or Educational Use clauses of U.S. Copyright Law or without permission of the copyright holder may be a violation of federal law. Contact the administrator if you have additional questions.
Recommended Citation
Garon, Elyse M., "Modeling the Diffusion of Heat Energy within Composites of Homogeneous Materials using the Uncertainty Principle" (2015). Honors Theses. 311.
https://aquila.usm.edu/honors_theses/311
Comments
Honors College Award: Excellence in Research