Date of Award
Spring 5-2019
Degree Type
Honors College Thesis
Department
Biological Sciences
First Advisor
Kevin Kuehn
Advisor Department
Biological Sciences
Abstract
The standing dead phase is an important stage of decomposition of emergent vegetation in wetlands, yet few studies have examined how intrinsic litter traits constrain standing dead decomposition or fungal colonization across plant tissue types or species. In addition to previous decomposition studies conducted by my research group, in which I quantified C:N, C:P, and % lignin, I conducted a global survey of emergent standing dead decomposition studies that measured decay rates and/or fungal biomass, and carbon:nitrogen (C:N), carbon:phosphorus (C:P), and/or % lignin. Across 49 datasets, low C:N (r = -0.728, Pr = -0.645, Pr = 0.129, P = 0.520) was weakly correlated to decomposition rates. Mixed-effects models indicated a C:N + lignin additive model (AICc = 53.62, P < 0.001) provides the best-fit based on Akaike Information Criteria (AICC). Low % lignin (r = -0.777, P = 0.001), however, was strongly negatively correlated with fungal biomass, indicating greater fungal colonization of low-lignin litter, and weakly correlated with C:N (r = -0.076, P = 0.730) and C:P (r = -0.238, P = 0.326) ratios. The AICc best-fit is only % lignin (AICc = 38.10, P < 0.001) based on the mixed-effects model. My study shows the constraining effect litter stoichiometry and % lignin have on fungal colonization and decomposition. This study improves understanding of global biogeochemical cycling and prediction of the fates of C and nutrients in standing dead wetland vegetation.
Copyright
Copyright for this thesis is owned by the author. It may be freely accessed by all users. However, any reuse or reproduction not covered by the exceptions of the Fair Use or Educational Use clauses of U.S. Copyright Law or without permission of the copyright holder may be a violation of federal law. Contact the administrator if you have additional questions.
Recommended Citation
Herbert, Tori A., "A Global Synthesis Reveals Litter Stoichiometry and Lignin Constrain Fungal Colonization and Decomposition Across Standing Dead Macrophytes" (2019). Honors Theses. 674.
https://aquila.usm.edu/honors_theses/674