Date of Award
Spring 5-2011
Degree Type
Masters Thesis
Degree Name
Master of Science (MS)
Department
Mathematics
Committee Chair
Jiu Ding
Committee Chair Department
Mathematics
Committee Member 2
Joseph Kolibal
Committee Member 2 Department
Mathematics
Committee Member 3
Haiyan Tian
Committee Member 3 Department
Mathematics
Abstract
The statistical study of chaotic dynamical systems has received a great deal of attention in the past several decades. As a branch of applied mathematics, its application has been found in various fields in science and engineering, while the theory and methods for the existence and computation of absolutely invariant measures have played an important role in this field. In this study, we focus on the computation of a nontrivial fixed point of Frobenius-Perron operators (F-P operators).
Let S: [0,1] → [0,1] be a piecewise monotonic mapping, and let PS : [0,1] → [0,1] be the Frobenius-Perron operators associated with S, which is defined by
PSf(x) = d/dx ∫S-1([0,x]) fdm, x ∈ [0,1] a.e.,
where m is the Lebesgue measure of [0,1]. Suppose that PS: [0,1] → [0,1] has a stationary density f*. By using Ulam's method, which he proposed based on a probability argument, approximating the fixed density function f* can be constructed by piecewise constant functions with respect to a partition of [0,1]. From another argument, we propose a different form for the definition of the Frobenius-Penon operator by combining the properties of the Dirac delta function. We can prove that the two definitions for Frobenius-Perron operators are equivalent. Then, we find that by approximating the Dirac delta function, we can exactly obtain the famous Ulam's method again. For the computation of fixed density functions we use the quasi- Monte Carlo method. We partition [0,1] into n subintervals, and for each subinterval we take N equal distance test points. Numerical results are given for several one dimensional test mappings.
Copyright
2011, Suanrong Chen
Recommended Citation
Chen, Suanrong, "Stationary Density Computation of the Frobenius-Perron Operators Based on the Dirac Delta Function" (2011). Master's Theses. 445.
https://aquila.usm.edu/masters_theses/445