Date of Award
Spring 2020
Degree Type
Masters Thesis
Degree Name
Master of Science (MS)
School
Biological, Environmental, and Earth Sciences
Committee Chair
Franklin T. Heitmuller
Committee Chair School
Biological, Environmental, and Earth Sciences
Committee Member 2
T. Markham Puckett
Committee Member 2 School
Biological, Environmental, and Earth Sciences
Committee Member 3
Carl A. "Andy" Reese
Committee Member 3 School
Biological, Environmental, and Earth Sciences
Committee Member 4
Davin J. Wallace
Committee Member 4 School
Ocean Science and Engineering
Abstract
Estuarine shorelines along the northern Gulf of Mexico are dynamic geologic settings that provide numerous ecological and economic benefits. By definition, estuaries are semi-enclosed bodies of water that receive sediment from two sources: (1) fluvial systems feeding into the estuary and (2) sediment transported by wave action and tidal currents from adjacent marine sources. Erosion of estuarine shorelines resulting from rising sea level, storm impact, and anthropogenic influence has been increasingly evident in the microtidal Gulf Coast over recent decades. This study collects quantitative and qualitative data to better understand sedimentary dynamics associated with contemporary estuarine shoreline erosion in Bon Secour Bay, Alabama and Perdido Bay, Florida. Historical aerial imagery compared with modern imagery indicates an average land loss rate of 0.30 – 0.67 m yr-1 at Bon Secour Bay (1992–2018) and 0.55 m yr-1 at Perdido Bay (1994–2018). Selection of these two sites is based on their similar microtidal, sandy, forested, undeveloped, northwest-to-southeast trending shorelines; albeit Bon Secour Bay has a considerably longer fetch and greater fluvial sediment input as it is part of the greater Mobile Bay estuarine system. Particle size of five nearshore sediment cores (~0.75 – 1.00 m below seafloor) are dominated by fine- to medium-grained sand with intervals of very fine and coarse sand and silt (rare). Sedimentological characteristics of nearshore cores and surface sediment suggest eroding shorelines are being directly deposited to the nearshore. Occurrences of shell material, wood fragments, coarser particles, and reduced sorting quality at the base of some core locations indicate facies change and possible ravinement surfaces that have been buried by sediment from a Holocene transgression.
Copyright
Jennifer L. Simpson 2020
Recommended Citation
Simpson, Jennifer, "Nearshore Sedimentology of Eroding Microtidal Estuaries: Bon Secour Bay, Alabama and Perdido Bay, Florida" (2020). Master's Theses. 717.
https://aquila.usm.edu/masters_theses/717